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Abstract 

A graph with no vertex of degree greater than f is called an f-graph. An f-graph 
to which no edge can be added without introducing a vertex of degree greater than f is 
called an edge maximal f-graph. We consider the following procedure. Starting with n 
labeled vertices and no edges, sequentially add edges one at a time so as to obtain at 
each step a labeled f-graph. At each step, the edge to be added is selected with equal 
probability from among those edges whose addition would not violate the f-degree restriction. 
A terminal graph of this procedure is a sequentially generated random edge maximal 
f-graph. Let P(m; n;f) denote the probability that a sequentially generated random 
edge maximal f-graph of order n has m vertices of degree less than f. The determination 
of the distribution P(m; n;f) is an open problem posed by P. ErdSs. We have obtained 
various insights concerning P(m; n;f). In particular, we conjecture the form ofP(m; n;f) 
as a function of f. 

1. In t roduct ion  

A graph (no loops, no multiple edges) on n vertices with no vertex of degree 
greater than some nonnegative integer f is called an f-graph. Although we do not 
develop this here, we note that classes of  random f-graphs with f <  n - 1 have many 
applications in the study of physical systems. For example, see [1,2] and references 
therein. 

The following procedure for generating a random f-graph models a non- 
reversible process having a form that is of interest in chemistry [3,4]. This type of  
model is sometimes referred to as a kinetic model, in contrast to an equilibrium 
model in which each of the edges of the random graph are present with some given 
probability. The procedure we present here has considerable mathematical interest 
in that it satisfies the criterion of being simple to describe but nevertheless possesses 
many aspects that are difficult to analyze theoretically. 
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A random f-graph generation procedure 

Let n, N and f be positive integers such that 2 _<f< n -  1 and N <fn/2. 

(1) Start with n labeled vertices. 

(2) From the set of all possible edges on these vertices, sequentially select 
edges so as to obtain at each step a labeled graph G on n vertices such 
that 

(a) no vertex of G has degree greater than f 

and 

(b) each edge selected in the sequential generation of G is chosen with 
equal probability from the set of edges that will satisfy condition (a). 

(3) Continue this procedure until either G is an f-graph with N edges or G 
is a graph to which no edge can be added without producing a vertex 
having degree greater than f. The latter graph is called an edge maximal 
f-graph [2], which we henceforth denote by EM f-graph. 

We shall refer to the above as procedure S. 
Observe that the Markov chain defined by procedure S with f =  n - 1 is analogous 

to the random graph process described in [5, p. 38]. However, the bounded degree 
restriction with f <  n - 1 leads to significantly different types of problems. 

There are many unanswered questions about f-graphs which are generated by 
processes modeled by procedure S. One such question, posed by P. Erd6s, is the 
following: 

If sequentially generated random EM f-graphs of order n are partitioned 
in accordance with their number of vertices of degree less than f, what 
is the probability distribution of these equivalence classes? 

In [6] we set the stage for our investigation of sequentially generated f-graphs. 
There we presented an algorithm that realizes procedure S. Using data obtained 
from this algorithm we derived, for f =  2, 3, and 4, approximation functions for the 
probability distribution of equivalence classes of EM f-graphs, the latter being 
partitioned as stated in the Erd6s question. These approximations were studied as 
functions of n (n < 250) for a given f. A summary of the results is given in [7]. In 
[8] a similar study was carried out for f >  4. In particular, it was found that the 
probability of the f-regular class (fn even) is monotonically increasing with respect 
to n. 

In [9] we obtained approximations for these probability distributions as functions 
of f for a given n. In what follows, we present various insights concerning these 
distributions. 
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2. The number of  orexic vertices 

We use the word o r e x i c ,  in t roduced  in [2], to designate  a ver tex  o f  degree  
less that f in an EM f -graph .  

THEOREM 2.1 

Let G be an n vertex EM (n - t)-graph with m orexic vertices and 2 < t < n - 2. 
Then ,  

m < m i n { n ( t -  1 ) / ( 2 t -  1), n -  t}. 

P r o o f  

have  
Since  the m orexic  ver t ices  in an EM (n - t ) -graph form an induced  K,,,, we 

m < n -  t. (2.1) 

The  ver t ices  in G c, the c o m p l e m e n t  o f  G, can be par t i t ioned into three sets 

M, A, and N, where  M consists  o f  the ver t ices  orexic  in G, A the ver t ices  that are 
adjacent  in G c to the ver t ices  in M, and N = V ( G  ~) - ( M  u A ) .  

Let  the m orexic  ver t ices  have degree  sequence  s 1 < s 2 < . . . < S m  in G. 
Then ,  in G ~, the ver t ices  in M have  degree  sequence  d 1 < d 2 < . . .  < d m, where  

dj = n - 1 - s m  + 1 - j .  Since s m + i - j  < n - t - 1, it fol lows that dj > t. In G c, the ver t ices  
in A each  have degree  t -  1. Fur the rmore ,  since the ver t ices  o f  M are independen t  
and each  ver tex  o f  A is adjacent  to a ver tex  o f  M, we have 

m 

( t -  1)IAI > ~ a) > m t .  (2 .2 )  
j = l  

Clearly,  n > m + I A I, which  combined  with (2.2) yields 

n > m + m t / ( t -  1). (2.3) 

Inequal i ty  (2.3) can be writ ten as 

rn < n ( t -  1)/(2t - 1). (2.4) 

Combin ing  (2.1) and (2.4) proves  the theorem.  [] 

COROLLARY 2.1.1 

For  2 < t < (n + 1)/2, an n vertex EM (n - t)-graph has at most  n ( t -  1) / (2 t -  1) 

o rex ic  vert ices .  
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Proof 
By theorem 2.1, m is bounded by m i n { n ( t - 1 ) / ( 2 t - 1 ) , n - t } .  Thus, 

m < n ( t -  1) / (2 t -  1) whenever n ( t -  1) / (2 t -  1) < n - t. The latter inequality holds if 
and only if 2t 2 -  (n + 1)t < 0, that is, if and only if 0 < t_< (n + 1)/2. Therefore, if 
2 < t < (n + 1)/2, then m < n ( t -  1) / (2 t -  1). [] 

COROLLARY 2.1.2 

An n vertex EM ( n - 2 ) - g r a p h  can have at most n/3 orexic vertices. 

Proof 
Let t = 2 in corollary, 2.1.1 [] 

Let m denote the number of  orexic vertices in a random EM f-graph 
of  order n. Then, m is a random variable whose range is a function of  n and f (see 
theorem 2.1). Denote by P(m; n; f )  the probability that a sequentially generated 
EM f-graph on n vertices has m orcxic vertices. 

Consider the three functions Xn, f ,  Ym,f, and Zm, ~ defined as follows. For fixed 
n and f,  let 

Xn,f(m) = P(m; n; f )  m = O, 1 . . . . .  

That is, X.,f is the probability distribution function for the random variable m. For 
fixed m and f,  let 

Ym,f(n) = P(m; n; f ) .  

Then, Y,,,,f describes how Xn, f (m) behaves as a function of  n for a given f. For fixed 
m and n, let 

Zm, . ( f )  = P(m; n; f ) ,  

Then, Z,.,. describes h o w  Xn,f(m ) behaves as a function of f for a given n. By definition, 
for fixed m, n, and f,  

X., f (m) =Ym,:(n) = Zm,  n ( f ) .  

As noted in section 1, Ym,f(n) was studied in [6-8] .  In this paper, our focus 
of  attention is Z,.,. ( f ) .  

PROBLEM 1 

For fixed n > f +  1 and all m, determine Z,,,, n ( f ) = P ( m ;  n; f ) .  Do the same 
for n going to infinity. 
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The cases f =  0, 1, and n - 1 are of  no probabilistic interest. Thus, we need 
only comment on Zm, n ( f )  in the domain f =  2, 3 . . . . .  n - 2. 

3. A detailed case study 

It is clear that the smaller f is in relation to n, the greater will be the difference 
between the properties of  a sequentially generated random f-graph and those of  a 
graph generated by the random graph process of  [5, p. 38]. On the other hand, if f 
is close to n - 1, then the difference in properties of  such f-graphs and graph process 
graphs might be expected to be minimal. However,  we point out that even in the 
extreme case f =  n - 2 there are properties for which this difference is nontrivial. 
For example, an EM (n - 1)-graph is a K n, whereas the EM (n - 2)-graphs, if partitioned 
into classes in accordance with their number  of  orexic vertices,' fall into at 
most Ln/3]  + 1 classes (see corollary 2.1.2). In particular, if n = 241 and f goes from 
239 to 240, then the number of  classes drops from 80 (there are no 239-regular 
graphs) to 1. Consequently, the Erd6s problem is of  interest for all f <  n -  1. 

Let T = T(n,f)  be such that P(T; n; f )  > P(m; n; f )  for all m. An EM f-graph 
with T orexic vertices is called predominant of type T. The problem of determining 
T for a given n and f was initially investigated in [8]. Subsequently, we have found 
that our realizations of  procedure S suggest 

LE(m)J < T(n,f)  < FE(m)7 for all n and f 

and 

E(m) < 2 + ( n -  1 2 ) ( f -  2) /6(n  - 4) for n > 50, 

where E(m) = ~m~omP(m; n; f )  is the expected value of  m. 
In fig. 1, we display the combination of  these observations with theorem 2.1, 

our result on the number of  orexic vertices in an EM f-graph of  order n. Namely,  
the function I shows the upper bound for values of  m for any distribution, that is, 
this upper bound depends only on the graph structure of  an EM f-graph, not on the 
stochastic process in which such a graph is being considered. The line segment II  
from (2, 2) to (n - 2, n/6) is our conjectured upper bound for both T and E(m) when 
n > 50 suggested by our data for sequentially generated EM f-graphs. 

Using the SG-Algorithm described in [6], we generated data to obtain the 
relative frequency RF(m; n; f )  for various values of  m, n, and f. The same values 
of  n were chosen for both fn even and fn odd: n = 31, 51, 101, and 241. The data 
were generated using samples of  size 10,000 graphs for n < 241 and of  size 5000 
graphs for n =  241; thus, the error at p = 0 . 5  is at most 0.0098 and 0.0139, 
respectively. 
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m = number a~ arex lc  v e r t i c e s  

n/2 I 

n/e, ," I ~ ' N ~  , r 
n/~ 

n/6 

(n- t ) /2  

Fig. 1. EM f-graphs of order n: I - the upper bound for the 
number of orexic vertices for any distribution and II - an upper 
bound for both T and E(m) (n > 50) for the sequential generation. 

As an illustration, we describe in detail RF(m; n; f )  = RFm,n(f) as a function 
of  f for n = 241. The tables of  these data are given in appendices A1 and A2 of  [9]. 
The behavior of  RFm,,,(f) seen here is representative in that the shape of  the data 
for various values of  n is in general the same. The plot of  the data for n = 241 is 
given in fig. 2 for both fn even and fn odd. The figure clearly shows the relative 
positions of  these data for different values of  m. The significant difference between 
these cases is seen in the data for m = 0, 1, and 2 and f <  40. For example, there 
are no f-regular  graphs when fn is odd and the m = 1 data behavior is clearly seen 
to be quite different. In fig. 3 we show the same data as a function of  m, and in 
fig. 4 the mean r~ and variance s 2 of m when fn is even. 
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4. Approximation functions 

In [9] we were led to approximation functions for Z, , ,n( f )o f  the form 
AfBexp(-Cf) ,  A > 0, C >  0, and 2 < f <  ( n -  1)/2. For ( n -  1)/2 < f <  n -  2, we 
conjecture the approximation functions are o l  the same form but with different 
coefficient values for a given value of  m. We believe that one reason for this is the 
fact that the strictly graph-theoretical u p ~ r  bound for the number of  orexic vertices 
changes abruptly from a linear to a nonlinear bound at f =  (n - 1)/2 (see fig. 1). We 
hold in reserve further speculation at this time. 

For n = 241 and m < 3, the coefficients A, B, and C were computed using the 
least-squares method. The results are shown in table 1. In fig. 5 we display this 
function for both fn even and fn odd. 

T ab l e  1 

T h e  coef f i c ien t s  for Z,.,.(f) for n = 241,  m = 0, 1, 2, 3 wi th  fn even,  

and m = 1, 2, 3 wi th  fn odd 

f n  even  m A B C 

0 1.15 - 0 . 1 2  0 .100 

1 0.87 x 10 -1 0.98 0.098 

2 1.72 x 10 -2 1.66 0.083 

3 1.75 × 10 -5 3.69 0 .092 

fn odd  rn A B C 

1 0.99 0 .20  0 .076 

2 0.52 x 10 -2 2.05 0.091 

3 2.21 x 10 -5 3 .62 0 .090 

We can make the following general observations and conjectures about 
the behavior of  the coefficients of  the approximation function AfBexp( - C  f )  for 
2 < f <  ( n -  1)/2. 

The coefficients A, B, and C are positive for all n except for the case corre- 
sponding to f-regular  graphs, that is, when m = 0. In the latter case B is negative. 

For increasing large n and m = 0, 1,2, or 3, the coefficients B and C decrease 
and A increases. 

If n is fixed and large, then as m increases, C tends to a constant, B increases 
linearly, and A decreases rapidly. 

If m >  3 is fixed, then t t ~  maximum value of AfBexp(-Cf)  and the 
value f =  B/C at which this maximum occurs both increase with increasing n. 

Our results clearly suggest the conjecture that for fixed m, n, and 2 < f  
< (n - 1)/2, we have Zm,n(f) = AfBexp(-Cf) ,  where A = A(m, n), B = B(m, n) and 
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Fig.  5. (a)  Z,~,n(f), m = O, 1, 2, and  3; n = 241,  fn e v e n .  

(b) Z , , t ,n ( f ) ,  m = 1, 2, a n d  3; n = 241,  fn odd .  
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C = C(m,n) are functions of m and n. Assuming the verification that Zm, n( f )  is of 
this form, the additional following problem is posed. 

PROBLEM 2 

Determine analytic expressions for A(m, n), B(m, n), and C(m, n) and/or deter- 
mine the limits of the coefficients as n goes to infinity. 
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